Solar Photothermocatalytic CO₂ conversion on Co-Cu/Brookite TiO₂-CeO₂ catalysts

Roberto Fiorenza,^a Salvatore Scirè,^a Marianna Bellardita,^b Leonardo Palmisano^b

^aDipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania. ^bDipartimento di Ingegneria, Università di Palermo, ed. 6, Viale delle Scienze, 90128 Palermo.

e-mail: roberto.fiorenza@unict.it (Roberto Fiorenza)

The artificial photosynthesis, which involves water splitting and CO₂ reduction processes, is a fascinating route for a sustainable solar fuels production¹. To increase the low conversion efficiency of this process, the multi-catalytic approach based on the synergism between thermo and photo-catalysis is a promising route. Semiconductors and in particular TiO₂ are workhorses for the CO₂ photoreduction, and in the last years different methodologies were proposed to increase its photoactivity². In this work, the combination of the photoactalytic features of the brookite TiO_2 (a not much investigated TiO_2 crystalline form) and the redox properties of CeO_2 (one of the most used support in the thermocatalytic applications) were studied together with the interaction between this peculiar TiO₂-CeO₂ composite and a Co-Cu metal oxides alloy. The Co species acted as holes traps increasing the charge carriers separation and the addition of copper allowed to increase the number of oxygen vacancies in the TiO_2 -CeO₂ composite. As a result, the bimetallic sample showed the best yield for CO and CH₄ production (Fig. 1A). Moreover, in the photothermo catalytic tests, the CO and the CH₄ production was increased to about 3 times compared to the tests carried out at room temperature (Fig. 1B). The solar driven-photothermo catalytic CO₂ reduction with semiconductor composites is a charming strategy to obtain green solar fuels with an environmental friendly utilization of carbon dioxide.



Fig. 1. (A) Solar photocatalytic CO_2 reduction at room temperature, (B) Photothermo catalytic tests at $T = 120^{\circ}C$.

Riferimenti

1. Vu, N.N.; Kaliaguine, S.; Do, T.O. Adv. Funct. Mater. 2019, 29, 1901825.

2. Al Jitan, S.; Palmisano, G.; Garlisi, C. Catalysts 2020, 10, 227.